পরাবৃত্ত (Ellipse) হলো কনিকের একটি বিশেষ ধরনের আকার, যা দুটি ফোকাল পয়েন্টের মধ্যে এমন একটি নির্দিষ্ট সম্পর্ক তৈরি করে যে, এর যেকোনো বিন্দুর জন্য দুই ফোকাল পয়েন্টের মধ্যে দূরত্বের যোগফল সবসময় একটি নির্দিষ্ট পরিমাণে থাকে। পরাবৃত্তের বিভিন্ন বৈশিষ্ট্য ও গাণিতিক ব্যাখ্যা এখানে বিস্তারিতভাবে আলোচনা করা হলো।
একটি পরাবৃত্ত দুটি প্রধান অক্ষ দ্বারা গঠিত:
পরাবৃত্তের সমীকরণটি দুটি অক্ষের দৈর্ঘ্য ও কেন্দ্রে দুটি ফোকাল পয়েন্টের অবস্থান বিবেচনায় নিয়ে লেখা হয়। একটি সাধারণ পরাবৃত্তের সমীকরণ হলো:
x2a2+y2b2=1
এখানে:
যদি a>b, তাহলে পরাবৃত্তটি অনুভূমিকভাবে বিস্তৃত থাকে, এবং যদি b>a, তাহলে এটি উল্লম্বভাবে বিস্তৃত থাকে।
c=√a2−b2
এখানে c হলো ফোকাল পয়েন্টের কেন্দ্র থেকে পরাবৃত্তের কেন্দ্র পর্যন্ত দূরত্ব।
পরাবৃত্তের বিভিন্ন বাস্তব জীবনের প্রয়োগ রয়েছে:
এইভাবে পরাবৃত্ত একটি গুরুত্বপূর্ণ গাণিতিক ধারণা এবং বাস্তব জীবনে এর বহুল ব্যবহার রয়েছে।